skip to main content


Search for: All records

Creators/Authors contains: "Kindratenko, Volodymyr"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2024
  2. ABSTRACT

    The next generation of wide-field deep astronomical surveys will deliver unprecedented amounts of images through the 2020s and beyond. As both the sensitivity and depth of observations increase, more blended sources will be detected. This reality can lead to measurement biases that contaminate key astronomical inferences. We implement new deep learning models available through Facebook AI Research’s detectron2 repository to perform the simultaneous tasks of object identification, deblending, and classification on large multiband co-adds from the Hyper Suprime-Cam (HSC). We use existing detection/deblending codes and classification methods to train a suite of deep neural networks, including state-of-the-art transformers. Once trained, we find that transformers outperform traditional convolutional neural networks and are more robust to different contrast scalings. Transformers are able to detect and deblend objects closely matching the ground truth, achieving a median bounding box Intersection over Union of 0.99. Using high-quality class labels from the Hubble Space Telescope, we find that when classifying objects as either stars or galaxies, the best-performing networks can classify galaxies with near 100 per cent completeness and purity across the whole test sample and classify stars above 60 per cent completeness and 80 per cent purity out to HSC i-band magnitudes of 25 mag. This framework can be extended to other upcoming deep surveys such as the Legacy Survey of Space and Time and those with the Roman Space Telescope to enable fast source detection and measurement. Our code, deepdisc, is publicly available at https://github.com/grantmerz/deepdisc.

     
    more » « less
  3. Free, publicly-accessible full text available December 1, 2024
  4. Abstract

    The findable, accessible, interoperable, and reusable (FAIR) data principles provide a framework for examining, evaluating, and improving how data is shared to facilitate scientific discovery. Generalizing these principles to research software and other digital products is an active area of research. Machine learning models—algorithms that have been trained on data without being explicitly programmed—and more generally, artificial intelligence (AI) models, are an important target for this because of the ever-increasing pace with which AI is transforming scientific domains, such as experimental high energy physics (HEP). In this paper, we propose a practical definition of FAIR principles for AI models in HEP and describe a template for the application of these principles. We demonstrate the template’s use with an example AI model applied to HEP, in which a graph neural network is used to identify Higgs bosons decaying to two bottom quarks. We report on the robustness of this FAIR AI model, its portability across hardware architectures and software frameworks, and its interpretability.

     
    more » « less
  5. Free, publicly-accessible full text available November 12, 2024
  6. ABSTRACT

    Supermassive black holes (SMBHs) are commonly found at the centres of most massive galaxies. Measuring SMBH mass is crucial for understanding the origin and evolution of SMBHs. Traditional approaches, on the other hand, necessitate the collection of spectroscopic data, which is costly. We present an algorithm that weighs SMBHs using quasar light time series information, including colours, multiband magnitudes, and the variability of the light curves, circumventing the need for expensive spectra. We train, validate, and test neural networks that directly learn from the Sloan Digital Sky Survey (SDSS) Stripe 82 light curves for a sample of 38 939 spectroscopically confirmed quasars to map out the non-linear encoding between SMBH mass and multiband optical light curves. We find a 1σ scatter of 0.37 dex between the predicted SMBH mass and the fiducial virial mass estimate based on SDSS single-epoch spectra, which is comparable to the systematic uncertainty in the virial mass estimate. Our results have direct implications for more efficient applications with future observations from the Vera C. Rubin Observatory. Our code, AGNet, is publicly available at https://github.com/snehjp2/AGNet.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)